If you use T1TAdb in your work, please cite:

"T1TAdb: the database of Type I Toxin-Antitoxin systems."; Tourasse NJ and Darfeuille F 2021, RNA 7: 1471-1481

Publications related to the data presented in T1TAdb:
    Data were mostly based on the papers by:
  • Arnion et al.: Mechanistic insights into type I toxin antitoxin systems in Helicobacter pylori: the importance of mRNA folding in controlling toxin expression. Nucleic Acids Res. 2017 May 5;45(8):4782-4795
  • Fozo et al.: Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res. 2010 Jun;38(11):3743-59
    The following publications were also used:
  • Germain-Amiot et al.: A novel Staphylococcus aureus cis-trans type I toxin-antitoxin module with dual effects on bacteria and host cells. Nucleic Acids Res. 2019 Feb 28;47(4):1759-73
  • Masachis and Darfeuille: Type I Toxin-Antitoxin Systems: Regulating Toxin Expression via Shine-Dalgarno Sequence Sequestration and Small RNA Binding. Microbiol Spectr. 2018 Jul;6(4):RWR-0030-2018
  • Maikova et al.: Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile. Nucleic Acids Res. 2018 May 18;46(9):4733-51
  • Folli et al.: Toward the identification of a type I toxin-antitoxin system in the plasmid DNA of dairy Lactobacillus rhamnosus. Sci Rep. 2017 Sep 21;7(1):12051
  • Kristiansen et al.: Mutually exclusive RNA secondary structures regulate translation initiation of DinQ in Escherichia coli. RNA. 2016 Nov;22(11):1739-49
  • Meißner et al.: In Vitro Characterization of the Type I Toxin-Antitoxin System bsrE/SR5 from Bacillus subtilis. J Biol Chem. 2016 Jan 8;291(2):560-71
  • Wen and Fozo: sRNA antitoxins: more than one way to repress a toxin. Toxins (Basel). 2014 Aug 4;6(8):2310-35
  • Guo et al.: RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli. Nucleic Acids Res. 2014 Jun;42(10):6448-62
  • Pinel-Marie et al.: Dual toxic-peptide-coding Staphylococcus aureus RNA under antisense regulation targets host cells and bacterial rivals unequally. Cell Rep. 2014 Apr 24;7(2):424-35
  • Wen et al.: The ZorO-OrzO type I toxin-antitoxin locus: repression by the OrzO antitoxin. Nucleic Acids Res. 2014 Feb;42(3):1930-46
  • Jahn and Brantl: One antitoxin--two functions: SR4 controls toxin mRNA decay and translation. Nucleic Acids Res. 2013 Nov;41(21):9870-80
  • Fozo: New type I toxin-antitoxin families from “wild“ and laboratory strains of E. coli: Ibs-Sib, ShoB-OhsC and Zor-Orz. RNA Biol. 2012 Dec;9(12):1504-12
  • Weaver et al.: The par toxin-antitoxin system from Enterococcus faecalis plasmid pAD1 and its chromosomal homologs. RNA Biol. 2012 Dec;9(12):1498-503
  • Durand et al.: The essential function of B. subtilis RNase III is to silence foreign toxin genes. PLoS Genet. 2012;8(12):e1003181
  • Durand et al.: Type I toxin-antitoxin systems in Bacillus subtilis. RNA Biol. 2012 Dec;9(12):1491-7
  • Sayed et al.: A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide. Nat Struct Mol Biol. 2011 Dec 25;19(1):105-12
  • Han et al.: Recognition and discrimination of target mRNAs by Sib RNAs, a cis-encoded sRNA family. Nucleic Acids Res. 2010 Sep;38(17):5851-66
  • Weaver: Prevalence of Fst-like toxin-antitoxin systems. Microbiology. 2010 Apr;156(Pt 4):975-7
  • Sharma et al.: The primary transcriptome of the major human pathogen Helicobacter pylori. Nature. 2010 Mar 11;464(7286):250-5
  • Weaver et al.: Identification and characterization of a family of toxin-antitoxin systems related to the Enterococcus faecalis plasmid pAD1 par addiction module. Microbiology. 2009 Sep;155(Pt 9):2930-40
  • Kawano et al.: An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol. 2007 May;64(3):738-54
  • Darfeuille et al.: An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell. 2007 May 11;26(3):381-92
  • Pichon et al.: Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14249-54
  • Kawano et al.: Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli. Mol Microbiol. 2002 Jul;45(2):333-49
  • Greenfield et al.: Antisense RNA regulation of the par post-segregational killing system: structural analysis and mechanism of binding of the antisense RNA, RNAII and its target, RNAI. Mol. Microbiol. 2001 Oct;42(2):527-37
  • Pedersen and Gerdes: Multiple hok genes on the chromosome of Escherichia coli. Mol Microbiol. 1999 Jun;32(5):1090-102
  • Franch et al.: Programmed cell death by hok/sok of plasmid R1: processing at the hok mRNA 3’-end triggers structural rearrangements that allow translation and antisense RNA binding. J Mol Biol. 1997 Oct 17;273(1):38-51